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Abstract

Probing is a common operation employed to reduce the position uncertainty of ob-

jects. This paper demonstrates a technique for constructing provably near optimal

probing strategies for precisely localizing polygonal parts. This problem is shown to

be dual to the well studied grasping problem of computing optimal finger placements

as defined by Mishra et al. [Mishra et al., 1987] and others [Ferrari and Canny, 1992,

Mirtich and Canny, 1994]. A useful quality metric of any given probing strategy can

easily be computed from simple geometric constructions in the displacement space of

the polygon. The approach will always find a minimal set of probes that is guaranteed

to be near optimal for constraining the position of the polygon. The size of the result-

ing set of probes is withinO(1) of the optimal number of probes and can be computed in

O(n log2 n) time whereas the exact optimal solution is in NP-hard [Das and Joseph, 1990].

The result of this work is a probing strategy useful in practice for refining part poses.

1 Introduction

In industrial manufacturing and automated assembly, accuracy is extremely important.

Attaining and maintaining high precision can increase the cost of fixturing and feeding

several fold [Nevins and Whitney, 1978]. The meaning of high verses low precision

depends on the application, but for typical mechanical assembly, low precision tooling

might provide accuracies in the tens of mils, while high precision would be around one

mil or less (One mil= 10�3 inch= 25:4 microns). This paper studies thepose refine-

ment problem. In pose refinement, sensing is used as an inexpensive route to high pre-

cision part pose, assuming the pose is already known at low precision. Most research to
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date in computer vision andRISC [Canny and Goldberg, 1994] sensing addresses the

pose acquisition problem, where pose is determined with no knowledge of initial pose.

The result of pose refinement is a high-precision estimate, but it differs from the prob-

lem of high-precision pose acquisition. Since initial pose is approximately known in

pose refinement, it can be used to make judicious choices about sensor placement. The

same accuracy can be achieved with fewer or less expensive sensors for pose refinement

as compared to pose acquisition, which must deal with all possible poses.

Initial motivation for tackling this problem arose after visits to several state-of-the-

art manufacturing companies, especially PTI (Productivity Technologies Inc.), Adept,

and Hewlett Packard Labs. In typical industrial workcells, it was pose refinement rather

than pose estimation that was the dominant sensing task. There are two reasons for this:

1. Feeder economics: Vibratory feeders are an inexpensive way to provide many

part types in known (albeit low precision) pose. Small parts can also be fed on

tape, which is more expensive (a couple of cents per part) but still costs far less

than a high-precision pallet. So the initial and ongoing costs of achieving low-

precision pose without sensing are small.

2. Multi-step manufacturing : In typical manufacturing, there are not one but sev-

eral sequential stages, including assembly stages, testing and packaging. A single

step might mate two parts whose poses are known at high precision. But the as-

sembly step itself introduces a small amount of uncertainty, and it is expensive

to transport the partial assembly at high precision to the next assembly stage. A

more economical solution is to use pose refinement at the next stage. So while

there might be one pose acquisition step per part to get approximate initial pose,
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Figure 1: A typical simple reflective sensor used for probing

there will be several pose refinement steps for that part that start with the low

precision output from the previous step and feeder, and increase the precision as

needed for the next step.

So the arguments for pose refinement are (1) that it replaces the most expensive

(high precision) fixturing and feeding steps and (2) it replaces the most frequent fixtur-

ing and feeding steps in multi-step assembly.

This paper focuses primarily on the use of simple light-beam sensors that act as line

probes in 3D, or point probes in the objects projection onto a horizontal surface. A

point light source and receiver define a line in space that is broken and unbroken by an

object as it moves relative to the beam (see Figure 1). The positions of the object when

the beam breaks give position readings, and three or more of these determine pose.

Those readings are subject to error, and the pose estimate accuracy is limited by those

errors and the sensor placements. This research provides algorithms for choosing the

probe placements to achieve near-optimal accuracy with a fixed number of probes, or
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to find a near-minimal number of probes to achieve a specified accuracy. An important

assumption of this work is that individual probing operations do not disturb or alter the

part’s pose in any way. Common industrial optical sensors easily satisfy this constrain

by being contactless. The problem is best summarized with the following problem

statement.

Problem Statement:

Given: A polygonal part geometry and an initial pose estimate ofOi =

(Oix; Oiy; Oi�) within � = kO � Oikm of the exact actual pose of the

object,O. Herek � km is defined to be them-norm.

Assumption: A probing operation leaves a part’s pose unchanged.

Solve: Find the optimal set of point probes defined as the minimal number

of probes and their placement necessary to reduce the uncertainty in the

position of an object to better than some acceptable level. The probes are

defined by a set of fixed points and vectors denoting the direction of travel

for each probe. A probe returns a real value. That value is the time or

position that a simple binary sensor changes state. The error associated

with this value is at most�, where� � �, based upon the presence or

absence of an object’s edge at a particular point along the path of the

probe.

With enough time, one could simply perform a large number of probes as shown

in Figure 2. However, in real industrial robotic assembly workcell design, throughput

is a heavily weighted criterion. Therefore, the goal is to produce the best possible
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Figure 2: A typical initial probe placement along the edges of an object

probing strategies that conform to the imposed constraints. The probing strategies that

result can be used by any point probe of the object’s two-dimensional projection. There

are natural generalizations to higher dimensions, although they are not as efficient. A

typical probe, shown in Figure 1, consists of a simple reflective light beam sensor that

can easily detect the presence or absence of an object. The algorithm also allows for

construction of specialized optimal probing strategies such as those for a scanning array

of probes as shown in Figure 3.

These near-optimal probings are obtained with a small number of actual probes

by maximizing the utility of each sensor probe placed on the object. This in turn

makes the problem tractable for a real robot in a high throughput automation sys-

tem. These strategies are within a constant factor of the optimal probing strategy

and can be solved inO(n log2 n) time whereas the exact optimal solution is in NP-

hard [Das and Joseph, 1990].
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Figure 3: Example of a fixed array scanning beam sensor

2 Previous and Related Work

We first discuss related work in part probing. Our main result is to show that probing

is dual to the grasping problem, and to give an optimal probing algorithm based on

set coverings. Therefore we then discuss related work on grasping and on set covering

algorithms.

2.1 Work in Probing

The importance of probing in terms of localizing and identifying objects with probes

has been explored by several individuals. Cole and Yap [Cole and Yap, 1987] and Bern-

stein [Bernstein, 1986] developed algorithms for choosing probes to obtain the geom-

etry of an unknown two-dimensional convex object. A generalization of this strategy

for higher dimensions is presented by Dobkinet al. [Dobkin et al., 1986] while a non-

convex version was developed by Boissonnat and Yvinec [Boissonnat and Yvinec, 1992].

Also, Lindenbaum and Bruckstein [Lindenbaum and Bruckstein, 1990] describe simi-
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lar probing strategies for a geometric probe composed of two line probes rotating about

a common axis point.

Development of efficient algorithms for scanning objects with probes for the pur-

pose of identification and localization have been explored by Wallacket al.[Wallack and Canny, 1994,

Wallack et al., 1993]. Likewise, point probing strategies have been developed for inser-

tion operations by Paulos and Canny [Paulos and Canny, 1994].

Jia and Erdmann [Jia and Erdmann, 1995] demonstrate an elegant technique for

choosing placements of simple binary sensors to discriminate objects in the plane. In

fact they also employ recent work on hitting sets and set coverings in solving their prob-

lem. The work in this paper differs mainly in the type of problem that is solved. Jia

and Erdmann choose fixed probes to discriminate individual object poses from a large

set of possible poses. The problem tackled in this paper is how to best choose moving

probes to refine the pose of a known object.

2.2 Work in Grasping

The need for good grasp planning algorithms for arbitrary shapes has always been im-

portant for robotics and industrial automation. The problem of optimal finger placement

has been addressed by Mishraet al. [Mishra et al., 1987] who define easily computable

quality metrics for grasps. Markenscoff and Papadimitriou [Markenscoff and Papadimitriou, 1989]

chose to optimize the grasp with respect to minimizing the forces needed to balance the

object’s weight through friction. Ponce and Faverjon [Ponce and Faverjon, 1991] fix

the number of fingers and solve a system of linear constraints in the positions of the

fingers to optimally position them along the polygonal edges. A similar technique for
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three-dimensional polyhedral objects was developed by Ponceet al.[Faverjon and Ponce, 1991].

Goldberg [Goldberg, 1993] also details a method for choosing grasps with a paral-

lel jaw gripper when the initial pose of the object is unknown. Other optimizing

grasps techniques based on simple geometric constructions have been developed by

Brost [Brost, 1988] and later Mirtich, Canny, and Ferrari [Ferrari and Canny, 1992,

Mirtich and Canny, 1994].

2.3 Work in Set Coverings

This paper will prove that finding the minimal set of probes is equivalent to solving the

convex set covering problem. This problem is discussed by Clarkson [Clarkson, 1993]

who describes aO(cn logO(1) n) time randomized algorithm for finding covering sets

of cardinality withinO(log c) of the optimal set coveringc.

More recent results by Br¨onniman and Goodrich [Br¨onnimann and Goodrich, 1994]

on the dual problem of finding minimal hitting sets improves on these bounds. They

demonstrate anO(n log2 n) algorithm that finds a hitting set of sizeO(1) from the

optimal set size. They employ work by Matou˘sek [Matous̆ek, 1990] using�-nets.

3 RISC Robotics

RISC robotics [Canny and Goldberg, 1994] (Reduced Intricacy in Sensing and Con-

trol) is an attempt to fuse automation and robotics technologies. TheRISC acronym,

borrowed from computer architecture, suggests the parallels between the two technolo-

gies.RISC robotics performs complex manufacturing operations by composing simple

elements. A synonymous phrase to describe this theme is simplyminimalist robotics.
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RISC robotics can be applied to many areas of manufacturing. For example,RISC

grasping uses simple two and three fingered grippers with traditional fixturing de-

vices such as clamps and vices [Wallack and Canny, 1994].RISC sensing employs

simple but precise sensor elements that can be combined to form complete systems

for localizing and recognizing arbitrary objects from a library [Wallack et al., 1993,

Wallack and Canny, 1993].

RISC robotics systems inherently consist of few degrees of freedom and low-

dimensional sensor spaces. This results in algorithms for manipulation and sensing

that are simple, highly accurate, and very fast.

4 Defining Optimality

When probing an object the objective is to choose point probes that allow the minimum

variation of the object pose. Point probes inherently contain some known error so it

is not enough to takek independent measurements to constraink degrees of freedom.

The placement of the probes effects the worst case object displacement. Therefore,

it is the relationship between the object displacements and the corresponding probe

displacements that are of interest. The goal is to find a set of probe placements that

minimizes the potential worst case object displacement.

4.1 Object Pose Definition

We defineO as the actual pose of the object in two-dimensions as

O = (Ox; Oy; O�)
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Our aim in this work is not in locating an object, but in refining the position of a known

object whose pose is known to some reasonable degree of accuracy. Our approach relies

on this initial coarse accuracy pose information. We define the assumed initial pose as

Oi and quantify a bound on the worse case displacement of the assumed pose from the

actual pose as

kOi �Okm � �

wherek � km is defined to be them-norm. At this point, we run into the usual problem

of defining a metric on a space with distance and angular coordinates. There may be

application-specific ways to weight the angular component, but a good default is to

weight the angular component by the object’s radius (i.e. the largest distance from any

point in the object to its coordinate origin). With this choice, the metric bounds the

maximum distance between any two corresponding points on the object atO andOi. A

typical value for� would be tens of mils. Finally, while we are considering anm-norm

for generality, the2-norm would seem to be the most natural choice.

We will be using point probes to refine the position of the object. Therefore, for a

given set of probe measurements there will also be a set of valid poses for the object

consistent with those sensor readings. We denote this object pose as�O and define it to

be an object pose chosen by an adversary consistent with some sensor readings given

the object is atO. We define the difference between the actual object position and the

adversary’s choice aso.

o = O � �O

Recall that we are attempting to refine the position of the object so that� will always
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be at least an order of magnitude larger thankok.

� � kok

In terms of linear displacement the initial pose uncertainty,�, is typically on the order

of tens of mils while the uncertainty under probing is on the order of a mil or less.

To quickly summarize we haveO as the actual pose of the object,Oi as our initial

pose estimate, and�O as a pose that an adversary can choose that does not violate our

sensor readings. That is, we cannot determine from the sensors if the object is at�O or

not. We will clarify later exactly how�O is defined.

4.2 Probe Placement

We construct probes along the perimeter of the object and denote them as

p = (px; py) l = (lx; ly)

wherep is the point where the probe touches the object when the object is atOi, andl is

the direction of motion of the probe. We must guarantee that no matter where the object

actually is, this probe always contacts the same edge. Assuming that the object radius

was used to weight the angular component of the pose metric, this can be accomplished

in a simple way: construct a strip about the probe pathl whose boundaries are parallel

to l, and at distance� from it; This strip represents the possible relative positions of the

probe for various actual object posesO. If the edge we are probing crosses the entire

strip, it will always be probed correctly. If the edge crosses only part of the strip, then

there is a possibleO such that this probe misses the edge completely. From now on, we

assume that all probes are chosen so that their� strips touch only the edge of interest.
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Figure 4: Relationship of placement of probes (solid points) with error balls (dashed circles) along an

edge (solid line) and the resulting displacement region (shaded). (a) Probes at endpoints of edge. (b)

Probes moved inward from edge resulting in larger region of allowable motion. (c) Probes coincident at

center of edge, allowing maximum displacement region.

The initial probe placement consists of placing a pair of probes on each edge. Each

probe is placed as near as possible to an endpoint of the edge, but subject to the strip

constraint above. As we shall see later, there is no loss of generality with this step as the

probes at the edge endpoints always provide the most constraining measurements. Our

algorithm will choose a subset of these initial probes as the near optimal probe set. Our

initial choice is based on the fact that we receive the most accurate pose information by

probing near the vertices of an object. Observe that probes near the vertices give rise to

large sensor displacements as a result of small rotational perturbations, while position

information is the same anywhere on the edge. Figure 4 demonstrates how moving a

set of probes with a given error out towards the vertices of an edge shrinks the size of

of allowable displacements for that edge.
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This set of probes is guaranteed to contain the optimal probe placement. Any edge-

interior probes would give only redundant information in the worst case, and our probe

choice is based on a worst-case analysis. A typical initial probe placement example is

shown in Figure 2. The remaining problem is to determine a subset of these probes that

still provide a substantial gain in object pose accuracy.

4.3 Probing Function

We place a coordinate system at the center of mass (COM) of the object. In addition we

define the rotational displacement of the object to be about this COM axis. In Figure 5

we depict the construction of the corresponding probe displacement for a given object

displacement. This will define the probing function. In this figuren is a unit normal

to the edge being probed,p is the initial probe location andp0 is its location after the

displacementO from the origin.

Recall that� is very small allowing us to take small angle approximations and write

p0k � pk + (Ox; Oy) + p?kO�

wherep? = (x; y)? = (�y; x) andk denotes thekth probe. It follows that the change

in probe position is

�pk = p0k � pk

= (Ox; Oy) + p?kO�

The probe actually only gives us useful position information normal to the edge being

probed. We could freely displace the object along the edge without changing that probe

reading. Therefore, the change in probe position along the edge normalnk can be
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Figure 5: Original probep and resulting probep0 after an object displacement (Ox; Oy; O�)

.

written asnk � �pk. Observe that even if we approach an edge at an angle, when

we detect the edge we can only claim that some point of the edge must intersect the

detected point. This is equivalent to the information we receive if we approach normal

to the edge. Therefore, the two probe approach techniques are equivalent and thus the

choice of edge approach is independent and left as a final implementation detail. Itdoes

affect the�-strip described earlier, and the amount of clearance from the edge endpoint

needed to ensure the correct edge is detected.

We are now ready to define the probing functionP : R3 ! R
k to be a real valued

function which maps object positions into ideal probe outputs of the form(P1; P2; : : : ; Pk).

We define each element to be

Pk(O) = �pk � nk (1)

Our probes will have a sensor error�, typically a mil or so. We define the measured

probes as�P 2 R
k . Given a sensor error of�, we observe that the measured probe values

14



�P must be consistent with the ideal probes given object poseO.

k �P � P (O)k1 � � (2)

Similarly, any possible object position�O that the adversary chooses must have all mea-

sured probes within� of the given measurements.

kP ( �O)� �Pk1 � � (3)

Using the triangle inequality on these last two expressions, we find that theO and �O

satisfy

kP (O)� P ( �O)k1 � 2� (4)

and observe that for any�O satisfying this inequality that there a is�P satisfying Equa-

tions 2 and 3. Thus the combined bound is tight. We will call the set of object displace-

ments�O that satisfy this inequalityK.

Recall that the actual position of the object is defined asO and the possible in-

terpreted object position for some sensor reading is�O where �O is any �O satisfying

Equation 4. We want to constrain the distance between the interpreted object position

and the actual object position to be as small as possible. This in turn minimizes the

worst case distance between the actual and measured poses, which is the ultimate goal

of pose refinement. We represent the former quantity as

kO � �Okm (5)

We employ an adversarial argument and note that if an adversary is allowed to move

the object to some valid�O consistent with the sensor readings it will always choose the
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�O such that the quantity in 5 is maximized. We express this as

sup
�O2K

kO � �Okm (6)

However, we are allowed to choose the set of probesP . Furthermore, we desire a set of

probes that will output drastically different values for different nearby object poses, thus

allowing us to identify different poses easily. Essentially we would like to eliminate the

possibilities of obtaining identical or near-identical sensor readings for an object in two

different poses. We can write this as

max
P
kP (O)� P ( �O)k1 (7)

or sinceP (O) is linear inO we can make the substitution to

max
P
kP (O� �O)k1 (8)

or rewriting

min
P

1

kP (O � �O)k1
(9)

Expression 6 scales linearly withO � �O, while 9 scales as the reciprocal ofO � �O. It

is natural to combine them as a product which is then independent of the magnitude of

O � �O:

min
P

�
max
�O2K

kO � �Okm
kP (O � �O)k1

�
(10)

From this we can arrive at our final optimality criterion and probe quality measurement

Q.

Q(P ) = min
P

�
max
�O2K

kO � �Okm
kP (O� �O)k1

�
(11)
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5 Displacement Space

Working in displacement space, we observe that there is a simple geometric construc-

tion of the optimality criterion as given in Equation 11. Displacement space, denoted

D 2 R
3 , is the space of all displacements in(x; y; �) of the objectO to be probed. Each

probe sensor that we introduce imposes constraints on the allowable set of displace-

ments of the object without violating the probe value.

Equation 4 from the previous section defines a pair of halfspaces in displacement

spaceD for each probepk.

kPk(O)� Pk( �O)k1 � 2�

kPk(O � �O)k1 � 2�

kPk(o)k1 � 2�

knxox + nyoy + (p? � n)o�k1 � 2�

whereo = O � �O. These two halfspace can be written as

nxox + nyoy + (p? � n)o� � 2� � 0 (12)

nxox + nyoy + (p? � n)o� + 2� � 0 (13)

The intersection of all2k halfspaces constructed fromk probes by definition repre-

sents a convex polytope inD . We name this polytopeS with the definition

S = \h2H(P )h

whereH(P ) is the family of2k halfspaces defined by the set ofk probesP .

In displacement space this polytopeS will have furthest outlying point which will

occur in the non-degenerate case at a vertex ofS. This furthest outlying point represents
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the largest object displacement from the assumed pose that still satisfies the given probe

measurements. More formally we define this point as

�(S) = sup
q2S

kqkm

The distance to�(S) is exactly the optimality criteria as defined in Equation 11. To

see this, assume that the denominator of Equation 11 has been fixed to some constant

�. Because the denominator scales withO � �O, we can always do this. The constraint

kP (O) � P ( �O)k1 = � defines a polytope in displacement space (choice ofO), and

if we set� = 2�, it defines exactly the polytopeS. With its denominator constrained,

maximizing 11 means maximizing its numeratorkO � �Ok, which is exactly what is

specified by�(S).

We assume thatP is fixed, so there is only optimization by the adversary overq.

Recall that an adversary can choose the actual sensor readings�P such that the object

displacement�(S) is a valid interpretation of�P . Hence, this is the largest displacement

of the object undetectable by the given probing strategy.

For illustrative purposes we work through a simple example without rotation. In

Figure 6 we show three probes on a triangle, an admittedly simple case, but enough

to demonstrate our method. Notice that each probe in real space gives rise to a pair

of parallel halfspaces in displacement space,D . If we remove probep2, the area of

polygonS in displacement space increases which represents the additional translational

freedom that the object can undergo and still remain consistent with the remaining two

sensor readings. Therefore, the added sensorp2 is a useful addition since it decreases

the area ofS and reduces the distance to�(S).

We are interested in probing strategiesP 0 that have approximately the same quality
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Figure 6: Simple example of probe space and displacement space without considering rotation. Note

the removal of one probe and the resulting change of the polygonS in the displacement space.

metricP . Remember that every probe we remove fromP removes a pair of halfspace

in D . This in turn changes the shape ofS but not always the point�(S) which defines

the optimality criteria. Therefore, we would like to find other optimal probes with fewer

probes. In particular, we would like to find

min
P 0�P

jP 0j : Q(P 0) � Q(P )

wherej � j is simply the cardinality of the setP 0.

We defineS 0 to be the polytope defined by the intersection of the halfspaces defined
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by the probesP 0. Observe that

S 0 � S

which implies that when we remove a probe, hence two halfspaces, we expect the

furthest outlier to remain where it is or increase in distance from the origin giving

j�(S 0)j � j�(S)j

Rather than removing half-planes in anad hocmanner such thatQ(S 0) remains

essentially unchanged, we will dualize and solve for a minimal convex set covering for

the corresponding points in the dual. These minimal set of points will be exactly dual

to the minimal set of halfspaces in displacement space by definition of the minimal

convex set cover problem. These resulting halfspaces inD correspond to minimal set

of probes, as desired. We discuss this dualization in the next section.

Observe that the production of any such probing strategy is independent of the error,

2�. This is true because we are interested in optimizing the ratio shown in Equation 11.

One can also note that topology of the polytopeS of the solution space is independent

of � which only serves as a scaling factor. That is, when we double� we get the same

polytope at twice the linear size (eight times the volume). Therefore, without loss of

generality we set� to one for the duration of the paper.

6 Displacement Space Dual

A strong relationship to grasping is shown in this section. We show that finding the

optimalk probe placements is equivalent to finding the optimal push-pull grasp for a
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set ofk fingers. A push-pull grasp is defined as a grasp that employs fingers capable of

exerting a pushing or pulling force at the contact.

We defineD D to be the dual ofD . We define the dual exactly in Table 1. In this

mapping we show how points inD map to planes inD D and similarly for planes in

D to points inD D . We note that by definition the dual ofD D is D , hence the duality

operation is symmetric.

D D
D

p : (px; py; p�) $ pD : pxx + pyy + p�� = 1

f : ax+ by + c� = 1 $ fD : (a; b; c)

S = polytope $ SD = ffD : f \ Int(S) = ;g

Table 1: Duality Mappings

Observe that a polytopeS defined as the intersection of a set of halfspaceshk be-

comes the polytopeSD. We define Bound(hk) to be the plane on the boundary of the

halfspacehk. The polytopeSD can also be expressed as the convex hull of the union of

dual points Bound(hk)D.

SD = Conv(fBound(hi)
D j i = 1 : : : ; kg)

Let r 2 S. The distance ofr from the origin inD is simply

jrj =
q
r2x + r2y + r2�

The dual planerD in D
D by definition is represented as

rxx + ryy + r�� = 1
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This distance of the closest point on this plane to the origin inD
D is given by

jrDj =
1q

r2x + r2y + r2�

Setting� =
q
r2x + r2y + r2� we get that the distance of this pointr from the origin

in D is � and the minimal distance of the dual planerD from the origin inD D is 1
�
.

Therefore,

jrj =
1

jrDj

Let fc be the closest plane to the origin ofD
D not intersecting Int(SD). The distance

to fc is the same as the distance to the closest pointuc in the boundary ofSD (which is

contained infc). And it is easy to see that�(S)D = fc where�(S) was defined earlier

as the furthest outlying point inS.

The closest point to the origin in the boundary of a polytope lies on the largest

inscribed sphere centered at the origin. Observe that�(S) lies on the smallest circum-

scribing sphere ofS in D . Therefore, finding the smallest circumscribing sphere� for a

polytopeS is equivalent to finding the largest inscribed sphere�D of the dual polytope

SD. This follows from the relationship

rad(�) =
1

rad(�D)

where rad(�) is the radius of the sphere�.

Now the planes Bound(h) through the halfspaces inD dualize to the points

Bound(hk)
D = (nx; ny; p

?

k )

These points are equivalent to the wrenches due to unit pull finger forces acting atp.

In the probing problem we obtain a pair of halfspaces for each probe. Hence, the op-
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timal probing problem is equivalent to the optimal push-pull grasping problem. We

use the optimal grasping criteria as defined by Mishraet al. [Mishra et al., 1987] and

others [Ferrari and Canny, 1992, Mirtich and Canny, 1994] which is the set of finger

placements such that the one-norm of the finger forces can resist the largest externally

applied wrench on the object. We also define the optimal probe placement as the min-

imal number of probes and their placement necessary to reduce the uncertainty in the

position of an object to better than some acceptable level. Using these metric defini-

tions, we obtain the following result.

Theorem 1 Finding the optimal placement ofk probes is equivalent to finding the

optimal push-pull frictionless grasp for a set ofk fingers.

7 Hitting Sets and Set Covers

Recall from the last section that the quality of that probing strategy is given directly by

the radius of the maximally inscribed sphere inSD. We would like to remove some

vertices ofSD such that the radius of the maximally inscribed sphere does not decrease

by much.

This problem can be posed as a convex set cover problem. The set cover prob-

lem is stated for arbitrary setsL andU in R
d . The problem is to findC � U with

L � Conv(U). Here we haveL as the sphere of desired radius. This problem has been

studied by several individuals. Recently, Clarkson [Clarkson, 1993] describes a ran-

domized algorithm for computing the three-dimensional convex point set cover from

an initial set ofn points to withinO(log c) of the optimal cover ofc points. His algo-

rithm has a running time ofO(cn logO(1) n).
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Recent work by Br¨onniman and Goodrich [Br¨onnimann and Goodrich, 1994] im-

prove on both the running time and approximation to the optimal convex set covering.

Their deterministic algorithm solves the equivalent problem of finding a minimal hit-

ting set, where a hitting set is a subsetH � X such thatH has a non-empty intersection

with every setR in a collection of subsets ofX. Their algorithm employs work by Ma-

tous̆ek [Matous̆ek, 1990] on�-nets to obtain a hitting set inO(n log2 n) time that is

within O(1) of the optimal size hitting set. This set corresponds exactly to the optimal

probe placement which we define as a set ofc probes that reduce the uncertainty in the

position of an object to at least some necessary level for the operation to be performed.

In our optimal construction we obtain pairs of halfspaces, hence pairs of points

in the dual. However, in the Br¨onniman and Goodrich algorithm they are treated

as two completely unrelated elements. This will result in near-optimal set sizes that

are in the worst case twice as large as we could achieve by grouping the pairs. Al-

ternatively, we can group them to obtain the near-optimal hitting set at a slight run-

ning time cost. This performance slowdown is a result of an increase in the VC-

dimension [Vapnik and̆Cervonenkis, 1971] as a result of our pairing.

VC-dimension, named for Vapnik anďChervonenkis, is defined for a range space

(X;R) with P � X as the cardinality of the largest setP that is shattered byR. A set

P is shattered byR if �R(P ) is the power-set ofP , where�R(P ) denotes the set of all

intersections ofP with sets inR.

To obtain an optimal probing strategy for an array of scanning sensors as shown in

Figure 3, we identify the co-linear points in the displacement space and assign them

labels such that the hitting set algorithm will include all or none of a set of co-linear
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points in the probe optimization selection. This also results in an increase in the VC-

dimension which affects the running time but still finds a hitting set withinO(1) of the

optimal one.

Our algorithm successfully handles other variations similar to the co-linear con-

straint for the scanning sensor without major modification. This makes it well adapted

to situations where optimal probing strategies under special constrains are needed and

not intuitive to observe.

The Theorem below summarizes much of the results of this paper.

Theorem 2 A near optimal set ofc point probes can be found for any polygonal object

in O(n log2 n) time. Furthermore, the size of the setc will be withinO(1) of the size of

the optimal set ofc point probes.

8 Conclusion

This paper has demonstrated a fast method by which optimal probe placements can be

obtained for any known polygonal object. More importantly, the solutions it generates

are guaranteed to be within a constant of the actual optimal number of probes necessary.

These probing strategies refine the position of an object whose pose is approximately

known. Furthermore, it is thispose refinement problemthat is a real and frequently

encountered challenge in industrial manufacturing. The constraint of requiring probes

that leave a part’s pose unchanged after each probing operation is easily satisfied by

employing optical contactless sensors commonly found in industry. This paper also

shows that the problem of optimal probe placement is dual to the well studied push-

pull grasping problem of positioning frictionless fingers on an object.

25



References

[Bernstein, 1986] Bernstein, H. (1986). Determining the shape of a convex n-sided polygon by

using 2nk+k tactile probes. InInformation Procssing Letters, pages 225–260.

[Boissonnat and Yvinec, 1992] Boissonnat, J. and Yvinec, M. (1992). Probing a scene of non-

convex polyhedra. InAlgorithmica, pages 321–342.
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